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Abstract
One-loop mass shifts to the classical masses of stable kinks arising in a massive
nonlinear S

2-sigma model are computed. Ultraviolet divergences are controlled
using the heat kernel/zeta function regularization method. A comparison
between the results achieved from exact and high-temperature asymptotic heat
traces is analyzed in depth.

PACS numbers: 11.15.Kc, 11.27+d, 11.10.Gc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a seminal paper, Olive and Witten [1] linked extended supersymmetric theories to BPS
solitons by showing that the classical mass of these stable lumps agreed exactly with the central
charge of the extended SUSY algebra. The subsequent issue concerning BPS saturation at
one-loop (rather than three) level has proved to be extremely subtle, prompting a remarkable
amount of work over the last 12 years. See, e.g., [2] and references quoted therein to find an
in-depth report on these developments.

A new actor entered the stage when in [3] a Stony Brook/Wien group computed the one-
loop mass shift of the supersymmetric CP

1-kink in an N = (2, 2) supersymmetric nonlinear
sigma model with twisted mass. Kinks of several types in massive nonlinear sigma models
were, however, discovered earlier, see [4–7]. In [8], three of us found several families of
non-topological kinks in another nonlinear sigma model: we chose S

2 as the target space
and considered the case when the masses of the pseudo-Nambu–Goldstone particles were
different. The O(2)-symmetry of the equal-mass case is explicitly broken to Z2 × Z2 and the
SO(2)-families of topological kinks of the former system are deformed to the four families
of non-topological kinks arising in the second system. The boundary of the moduli space of
non-topological kinks in the last model is formed by a pair of topological kinks of different
energy. The analysis of kink stability in the massive nonlinear S

2-sigma model performed
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in [9] allowed us to calculate the one-loop mass shifts for the topological kinks by using the
Cahill–Comtet–Glauber formula [10]. These authors showed that the one-loop mass shift for
static solitons can be read from the eigenvalues of the bound states of the kink second-order
fluctuation operator and the threshold to the continuous spectrum when this operator is a
transparent Schrödinger operator of the Pösch–Teller type. This is the case of the topological
kinks of the massive nonlinear S

2-sigma model when a parallel frame to the kink orbits is
chosen to refer to the fluctuations.

The aim of this paper is to offer another route for computing the one-loop kink mass
shift in order to unveil some of the intricacies hidden in this subtle problem. We shall follow
the method developed in [12, 13] based on the heat kernel/zeta function regularization of
ultraviolet divergences. See also the lectures [14], where full details can be found. Because
the spectrum of small kink fluctuations in our system can be identified analytically, we are
able to give the exact answer for the mass shifts. We shall also show, however, how to reach
approximately the same result using the coefficients of the heat kernel asymptotic expansion.
The interest of this calculation is that a formula belonging to the class of formulas shown in
[17] will be derived. The importance of this type of formula lies in the fact that it can be
applied to obtain the one-loop mass shifts of topological defects even when the spectrum of
the second-order fluctuation operator is not known; for instance, in the case of two-component
topological kinks: see [12, 13]. Similar formulas work even for Abelian gauge theories in
(2+1)-dimensions and thus the mass shifts of self-dual Nielsen–Olesen vortices and semi-local
strings can be calculated approximately, see [18–20].

To end this brief introduction we simply mention that interesting calculations have recently
appeared addressing one-loop kink mass corrections and kink melting at finite temperatures
in the sine-Gordon, CP 1 and λφ4 models in a purely bosonic setting, see [15].

The organization of the paper is as follows: in section 2, we introduce the model
and explain our conventions. In section 3, the perturbative sector as well as the mass
renormalization procedure is discussed. Section 4 is devoted to the analysis of the stable
topological kinks in this system. The second-order kink fluctuation operator is obtained,
placing special emphasis on its geometric properties. In section 5, the one-loop mass shift
is computed using the heat kernel/zeta function regularization method. Section 6 offers a
comparison of the exact result obtained in section 5 with the approximation reached from the
high-temperature asymptotic expansion. Finally, a summary and outlook are offered, and two
appendices containing some technical material are included.

2. The (1 + 1)-dimensional massive nonlinear S
2-sigma model

The action governing the dynamics of the nonlinear S
2-sigma model and the constraint on the

scalar fields are

S[φ1, φ2, φ3] =
∫

dt dx

{
1

2
gμν

3∑
a=1

∂φa

∂xμ

∂φa

∂xν

}
, φ2

1 + φ2
2 + φ2

3 = R2. (1)

The scalar fields are thus maps, φa(t, x) ∈ maps(R1,1, S
2), a = 1, 2, 3, from the (1 + 1)-

dimensional Minkowski spacetime to a S
2-sphere of radius R, which is the target manifold of

this nonlinear sigma model. Our conventions for R
1,1 are as follows: xμ ∈ R

1,1, μ = 0, 1
with x0 = t, x1 = x and gμν = diag(1,−1). Then xμ · xμ = gμνxμxν = t2 − x2 and

∂

∂xμ

(
∂

∂xμ

)
= gμν ∂2

∂xμ∂xν
= � = ∂2

∂t2
− ∂2

∂x2
. (2)

2
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The infrared asymptotics forbid massless particles in (1 + 1)-dimensional scalar field theories,
see [16]. We therefore include the simplest potential energy density that would be generated
by quantum fluctuations4:

V (φ1, φ2, φ3) = 1
2

(
α2

1φ
2
1 + α2

2φ
2
2 + α2

3φ
2
3

)
.

(1) Solving φ3 in favor of φ1 and φ2, sg(φ3)φ3 =
√

R2 − φ2
1 − φ2

2 , we find

S = 1

2

∫
dt dx

⎧⎨
⎩ ∂φ1

∂xμ

· ∂φ1

∂xμ
+

∂φ2

∂xμ

· ∂φ2

∂xμ
+

(φ1∂μφ1 + φ2∂μφ2)√
R2 − φ2

1 − φ2
2

· (φ1∂
μφ1 + φ2∂

μφ2)√
R2 − φ2

1 − φ2
2

− V
S

2 [φ1, φ2]

⎫⎬
⎭ ,

where

V
S

2(φ1, φ2) = 1

2

((
α2

1 − α2
3

)
φ2

1 +
(
α2

2 − α2
3

)
φ2

2 + const.
) � λ2

2
φ2

1(t, x) +
γ 2

2
φ2

2(t, x),

with λ2 = (α2
1 − α2

3

)
, γ 2 = (α2

2 − α2
3

)
, λ2 � γ 2. The masses of the pseudo-Nambu–

Goldstone bosons are respectively λ and γ .
(2) Interactions, however, come from the geometry:

(φ1∂μφ1 + φ2∂μφ2)√
R2 − φ2

1 − φ2
2

· (φ1∂
μφ1 + φ2∂

μφ2)√
R2 − φ2

1 − φ2
2

� 1

R2

(
1 +

1

R2

(
φ2

1 + φ2
2

)
+

1

R4

(
φ2

1 + φ2
)2

+ · · ·
)

·
(

φ1
∂φ1

∂xμ
+ φ2

∂φ2

∂xμ

)(
φ1

∂φ1

∂xμ

+ φ2
∂φ2

∂xμ

)

and 1
R2 is a non-dimensional coupling constant.

In the natural system of units, h̄ = c = 1, the dimensions of fields, masses and coupling
constants are respectively [φa] = 1 = [R], [γ ] = M = [λ]. We define non-dimensional
spacetime coordinates and masses:

xμ −→ xμ

λ
, σ 2 = α2

2 − α2
3

α2
1 − α2

3

= γ 2

λ2
, 0 < σ 2 � 1

to write the action and the energy in terms of them:

S = 1

2

∫
dt dx

⎧⎨
⎩ ∂φ1

∂xμ

· ∂φ1

∂xμ
+

∂φ2

∂xμ

· ∂φ2

∂xμ
+

(φ1∂μφ1 + φ2∂μφ2)√
R2 − φ2

1 − φ2
2

· (φ1∂
μφ1 + φ2∂

μφ2)√
R2 − φ2

1 − φ2
2

− φ2
1(t, x) − σ 2φ2

2(t, x)

⎫⎬
⎭ (3)

4 Without loss of generality, we choose the parameters such that: α2
1 � α2

2 > α2
3 � 0.

3



J. Phys. A: Math. Theor. 42 (2009) 385403 A Alonso-Izquierdo et al

Table 1. Propagators.

Particle Field Propagator Diagram

Nambu–Goldstone G1(x
μ)

i

k2
0 − k2 − 1 + iε

k•——————•

Nambu-Goldstone G2(x
μ)

i

k2
0 − k2 − σ 2 + iε

k•- - - - - - - - - - - - -•

E = λ

2

∫
dx

{(
∂φ1

∂t

)2

+

(
∂φ2

∂t

)2

+
(φ1∂tφ1 + φ2∂tφ2)

2

R2 − φ2
1 − φ2

2

+

(
∂φ1

∂x

)2

+

(
∂φ2

∂x

)2

+
(φ1∂xφ1 + φ2∂xφ2)

2

R2 − φ2
1 − φ2

2

+ φ2
1(t, x) + σ 2 · φ2

2(t, x)

}
.

There are two homogeneous minima of the action or vacua of our model: φV ±
1 = φV ±

2 =
0, φV ±

3 = ±R, the north and south poles respectively. The choice of one of the poles to
quantize the system spontaneously breaks the Z2 × Z2 × Z2 symmetry of the action (3),
φa → (−1)δabφb , a, b = 1, 2, 3, to: Z2 × Z2, φα → (−1)δαβ φβ, α, β = 1, 2. Therefore, the
configuration space C = {maps(R, S

2)/E < +∞} is the union of four disconnected sectors
C = CNN

⋃
CSS
⋃

CNS
⋃

CSN labeled by the vacua reached by each configuration at the two
disconnected components of the boundary of the real line x = ±∞.

3. Mass renormalization

The field equations

� φ1 + ∂μ

[
φ1
∑2

α=1 φα∂μφα

R2 −∑2
α=1 φαφα

]
+ φ1

⎡
⎣∑2

α=1 φα∂μφα

∑2
β=1 φβ∂μφβ(

R2 −∑2
α=1 φαφα

) 3
2

+ 1

⎤
⎦ = 0

� φ2 + ∂μ

[
φ2
∑2

α=1 φα∂μφα

R2 −∑2
α=1 φαφα

]
+ φ2

⎡
⎣∑2

α=1 φα∂μφα

∑2
β=1 φβ∂μφβ(

R2 −∑2
α=1 φαφα

) 3
2

+ σ 2

⎤
⎦ = 0

become linear for small fluctuations, Gα(xμ) = φV ±
α + δGα(xμ), around the vacuum:

� δG1(t, x) + δG1(t, x) = O(δGαδGβ), � δG2(t, x) + σ 2δG2(t, x) = O(δGαδGβ).

(4)

We shall need the Feynman rules only for the four-valent vertices. Besides the two propagators
for the (pseudo) Nambu–Goldstone bosons (see table 1) there are three vertices with four
external legs (see table 2). The derivatives appearing in the interactions induce dependence on
the momenta in the weights. This also affects the sign and the combinatorial factors. Naturally,
there are many more vertices in this model, but we list only the vertices that contribute to the
self-energy of the Nambu–Goldstone boson up to one-loop order.

3.1. Plane waves and vacuum energy

The general solution of the linearized field equations (4) governing the small fluctuations of
the Nambu–Goldstone fields is

δG1(x0, x) = 1

2
·
√

1

l

∑
k

1√
2ω1(k)

{a1(k) e−ik0x0+ikx + a∗
1(k) eik0x0−ikx}

4
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δG2(x0, x) = 1

2
·
√

1

l

∑
q

1√
2ω2(q)

{a2(q) eiq0x0−iqx + a∗
2(q) e−iq0x0+iqx},

where k0 = ω1(k) =
√

k2 + 1, q0 = ω2(q) =
√

q2 + σ 2, and the dispersion relations
k2

0 − k2 − 1 = 0, q2
0 − q2 − σ 2 = 0 hold:

K0

(
eikx

0

)
= ω2

1(k)

(
eikx

0

)
, K0

(
0

eiqx

)
= ω2

2(q)

(
0

eiqx

)

K0 =
(

K011 0
0 K022

)
=
(

− d2

dx2 + 1 0

0 − d2

dx2 + σ 2

)
.

We have chosen a normalization interval of non-dimensional ‘length’ l = λL, I = [− l
2 , l

2

]
,

and we impose PBC on the plane waves so that k · l = 2πn1 , q · l = 2πn2 with n1, n2 ∈ Z.
Thus, K0 acts on L2 =⊕2

α=1 L2
α(S1), and its spectral density at the l → ∞ limit is

ρK0(k) =
(

dn1
dk

0
0 dn2

dq

)
= l

2π

(
1 0
0 1

)
.

From the classical-free (quadratic) Hamiltonian

H(2) = λ

2

∫
dx

{(
∂δG1

∂x0
· ∂δG1

∂x0
+

∂δG1

∂x
· ∂δG1

∂x

)
+

(
∂δG2

∂x0
· ∂δG2

∂x0
+

∂δG2

∂x
· ∂δG2

∂x

)

+ δG1 · δG1 + σ 2δG2 · δG2

}
=
∑

k

2∑
α=1

λ

2
[ωα(k)(a∗

α(k)aα(k) + aα(k)a∗
α(k))],

one passes via canonical quantization to the quantum-free Hamiltonian:[
âα(k), â

†
β(q)
] = δαβδkq,

Ĥ
(2)
0 =

∑
k

λ

[
ω1(k)

(
â
†
1(k)â1(k) +

1

2

)
+ ω2(k)

(
â
†
2(k)â2(k) +

1

2

)]
.

The vacuum energy is

âα(k)|0;V 〉 = 0,∀k,∀α,

�E0 = 〈0;V |Ĥ (2)
0 |0;V 〉 = λ

2

∑
k

ω1(k) +
λ

2

∑
k

ω2(k) = λ

2
TrL2K

1
2

0

3.2. One-loop mass renormalization counter-terms

There are four ultraviolet divergent graphs in one-loop order of the h̄-expansion contributing
to the G1(x

μ) and G2(x
μ) Nambu–Goldstone boson self-energies:

• Self-energy of G2

2i

R2
· I (1) +

2i

R2
· I (σ 2) =

p p

p+k

+

p p

p+k

= 2i

R2
·
∫

d2k

(2π)2
· i(pμ + kμ)pμ

(pμ + kμ)kμ − 1 + iε

+
2i

R2
·
∫

d2k

(2π)2
· i(pμ + kμ)pμ

(pμ + kμ)kμ − σ 2 + iε

= 2i

R2
·
∫

d2k

(2π)2
· i

kμkμ − 1 + iε
+

2i

R2
·
∫

d2k

(2π)2
· i

kμkμ − σ 2 + iε
,

5
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Table 2. Fourth-order vertices.

Vertex Weight Vertex Weight Vertex Weight

k l

p q

2i
kµ p

µ

R2

k l

p q

2i
kµ p

µ

R2

k l

p q

2i
kµ p

µ

R2

Table 3. One-loop counter-terms.

Diagram Weight

− 2i

R2
(I (1) + I (σ 2))

− 2i

R2
(I (1) + I (σ 2))

LC.T. = − 1

R2
· [I (1) + I (σ 2)](φ2

1(x
μ) + σ 2φ2

2(x
μ))

• Self-energy of G1

2iσ 2

R2
· I (1) +

2iσ 2

R2
· I (σ 2) =

p p

p+k

+

p p

p+k

= 2iσ 2

R2
·
∫

dk

4π
· 1√

k2 + 1
+

2iσ 2

R2
·
∫

dk

4π
· 1√

k2 + σ 2
,

where we have computed the k0 integrations using the residue theorem. We only show
this step explicitly in the computation of the self-energy of δG1 because it suffices to point
out how to regularize these divergent integrals by means of spectral zeta functions. The
regularization just mentioned will be performed later in section 5.4.

The pμpμ factor becomes constant when the momentum is put ‘on shell’ in the
external legs, pμpμ = 1, pμpμ = σ 2. This process gives us the mass renormalization
counter-terms. The Lagrangian density of counter-terms shown in table 3 must be added
to cancel the above divergences exactly. We also show the vertices generated at the
one-loop level.

4. Isothermal coordinates and topological kinks

In this section we shall use the isothermal coordinates in the chart S
2 − {(0, 0,−R)} obtained

via stereographic projection from the south pole:

χ1 = φ1

1 + φ3

R

= Rφ1

R + sg(φ3)

√
R2 − φ2

1 − φ2
2

,

χ2 = φ2

1 + φ3

R

= Rφ2

R + sg(φ3)

√
R2 − φ2

1 − φ2
2

. (5)

6
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The geometric data of the sphere in this coordinate system are

ds2 = 4R4

(R2 + χ1χ1 + χ2χ2)2
, g11(χ

1, χ2) = g22(χ
1, χ2) = 4R4

(R2 + χ1χ1 + χ2χ2)2

�1
11(χ

1, χ2) = −�1
22(χ

1, χ2) = �2
12(χ

1, χ2) = �2
21(χ

1, χ2) = −2χ1

R2 + χ1χ1 + χ2χ2

�2
22(χ

1, χ2) = −�2
11(χ

1, χ2) = �1
12(χ

1, χ2) = �1
21(χ

1, χ2) = −2χ2

R2 + χ1χ1 + χ2χ2

R1
122(χ

1, χ2) = −R1
212(χ

1, χ2) = −R2
121(χ

1, χ2) = R2
211(χ

1, χ2) = −4R4

(R2 + χ1χ1 + χ2χ2)2
.

The kinetic and potential energy densities read

T (χ1, χ2) = 2R4

(R2 + χ1χ1 + χ2χ2)2
· (∂tχ

1∂tχ
1 + ∂tχ

2∂tχ
2)

V (χ1, χ2) = 2R4

(R2 + χ1χ1 + χ2χ2)2
· (∂xχ

1∂xχ
1 + ∂xχ

2∂xχ
2 + χ1χ1 + σ 2χ2χ2).

From the action S = ∫ d2x[T − V ], one derives the field equations

� χi + �i
jk∂μχj∂μχk + δi

1χ
1 + σ 2δi

2χ
2 − 2
(
δi

1χ
1 + δi

2χ
2
) χ1χ1 + σ 2χ2χ2

R2 + χ1χ1 + χ2χ2
= 0, (6)

which for static configurations reduce to

−d2χi

dx2
− �i

jk

dχj

dx

χk

dx
+ δi

1χ
1 + σ 2δi

2χ
2 − 2
(
δi

1χ
1 + δi

2χ
2) χ1χ1 + σ 2χ2χ2

R2 + χ1χ1 + χ2χ2
= 0. (7)

4.1. Topological K-kinks

We try the χ1 = 0 orbit in (7) and reduce this ODE system to the single ODE

d2χ2

dx2
− 2χ2

R2 + χ2χ2

dχ2

dx

dχ2

dx
= σ 2χ2

(
1 − 2

χ2χ2

R2 + χ2χ2

)
. (8)

χ1
K(x) = 0, χ2

K(x) = ±R e±σ(x−x0), (9)

are solutions of (8) of finite energy

E[K] = λ

∫ ∞

−∞
dx

R2σ 2

cosh2(σ (x − x0))
= 2λR2σ. (10)

In (9), x0 is an integration constant that sets the kink center. The kink field components in the
original coordinates

φK
1 (x) = 0, φK

2 (x) = R

cosh[σ(x − x0)]
, φK

3 (x) = ±R tanh[σ(x − x0)]

are either kink-shaped, φK
3 , or bell-shaped, φK

2 . It is clear that the four solutions (9) belong to
the topological sectors CNS or CSN of the configuration space. Lorentz invariance tells us that

χ1
K(x) = 0, χ2

K(x) = ±R exp

[
±σ

(
x − vt√
1 − v2

− x0

)]
(11)

are solitary wave solutions of the full field equations (6).

7
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4.2. Second-order fluctuation operator

Let us consider small kink fluctuations

χ(x) = χK(x) + η(x), η(x) = (η1(x), η2(x)).

Here, χK(x) = (χ1
K(x), χ2

K(x)
)

is the kink solution and η(x) = η1(x) ∂
∂χ1 + η2(x) ∂

∂χ2 ∈
�(T S

2) are vector fields along the kink orbit—expressed in the orthonormal basis
〈

∂
∂χi ,

∂
∂χj

〉 =
δij of T S

2—giving the small fluctuations on the kink. From the tangent vector field to the

orbit χ ′
K(x) = dχ1

K

dx
∂

∂χ1 + dχ2
K

dx
∂

∂χ2 , the covariant derivative and the curvature tensor

∇χ ′
K
η(x) = (η′i (x) + �i

jk(χK)ηj (x)χ ′k
K (x)
) ∂

∂χi
,

R(χ ′
K, η)χ ′

K = χ ′i
K(x)ηj (x)χ ′k(x)Rl

ijk(χK)
∂

∂χl
,

we obtain the geodesic deviation operator

D2η

dx2
(x) = ∇χ ′

K
∇χ ′

K
η(x),

D2η

dx2
(x) + R(χ ′

K, η)χ ′
K(x).

We also need the Hessian of the ‘mechanical’ potential U(χ1, χ2) = −V (χ1, χ2)

∇ηgradU(x) = ηi(x)

(
∂2U

∂χi∂χj
(χK) − �k

ij (χK)
∂U

∂χk
(χK)

)
gjl ∂

∂χl
.

The second-order fluctuation operator around the kink χK is

�(K)η(x) = −
[
D2η

dx2
(x) + R(χ ′

K, η)χ ′
K + ∇η grad U(x)

]
. (12)

4.3. Small fluctuations on K-kinks

Application to the K-kink χK(x) = (χ1
K(x) = 0, χ2

K(x) = Re−σx
)

gives

�(K)η =
[
−
(

d2η1

dx2
+ 2σ(1 − tanh σx)

dη1

dx
− (1 − 2σ 2 + 2σ 2 tanh σx)η1

)
∂

∂χ1

−
(

d2η2

dx2
+ 2σ(1 − tanh σx)

dη2

dx
+ σ 2 (1 − 2 tanh σx) η2

)
∂

∂χ2

]
. (13)

The second-order fluctuation operator in the orthonormal frame is a second-order differential
operator that has first-order derivatives both in the direction of the kink orbit, ∂

∂χ2 , and the

orthogonal direction to the orbit ∂
∂χ1 .

Alternatively, we can use a parallel frame, μ(x) = μ1(x) ∂
∂χ1 +μ2(x) ∂

∂χ2 , along the K-kink
orbit:

dμi

dx
+ �i

jk(χK)χ
′j
K μk = 0 ≡

{
dμ1

dx
+ σ(1 − tanh)μ1(x) = 0 ⇒ μ1(x) = 1 + e−2σx

dμ2

dx
+ σ(1 − tanh)μ2(x) = 0 ⇒ μ2(x) = 1 + e−2σx.

In this parallel frame, the vectors of the basis μi(x) ∂
∂χi point in the same directions as ∂

∂χi but
their moduli vary along the kink orbit:〈

μ1(x)
∂

∂χ1
, μ1(x)

∂

∂χ1

〉
=
〈
μ2(x)

∂

∂χ2
, μ2(x)

∂

∂χ2

〉
= (1 + e−2σx)2.

8
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Writing the fluctuations in this frame, η(x) = ξ 1(x)μ1(x) ∂
∂χ1 + ξ 2(x)μ2(x) ∂

∂χ2 , we find

�(K)η = μ1(x)

(
−d2ξ 1

dx2
+

(
1 − 2σ 2

cosh2σx

)
ξ 1

)
∂

∂ξ 1

+ μ2(x)

(
−d2ξ 2

dx2
+

(
σ 2 − 2σ 2

cosh2σx

)
ξ 2

)
∂

∂χ2
. (14)

In the parallel frame, the second-order fluctuation operator is a transparent (reflection
coefficient equal to zero) Pösch–Teller–Schrödinger operator both in the parallel and
orthogonal directions to the kink orbit.

This analysis is deceptively simple: acting respectively on η1(x) = (1 + e−2σx)ξ 1(x) and
η2(x) = (1+e−2σx)ξ 2(x) the terms with first-order derivatives in (13) disappear and (1+e−2σx)

factors out, leaving very well-known Schrödinger operators acting respectively on ξ 1(x) and
ξ 2(x). The key point is that the differential operators in (13) and (14) share the eigenvalues
although their eigenfunctions differ by the μi(x) factors. The spectral functions associated
are thus identical and it seems wise to use the best known form. What we have shown here
is the geometrical meaning of the μi(x) factors: they provide a parallel frame along the kink
orbit.

4.4. The spectrum of small kink fluctuations

Changing from vector to matrix notation,

∂

∂χ1
−→

(
1
0

)
,

∂

∂χ2
−→

(
0
1

)
,

we now use the differential operators of formula (14) to write the linearized field equations
satisfied by the small kink fluctuations in the parallel frame:

χ1(t, x) = χ1
K(x) + μ1(x)δK1(t, x), χ2(t, x) = χ2

K(x) + μ2(x)δK2(t, x)

∂2δK1

∂t2
+ K11δK1 = 0,

∂2δK2

∂t2
+ K22δK2 = 0.

Therefore, the eigenfunctions of the differential operator

K =
(

K11 0
0 K22

)
=
(

− d2

dx2 + 1 − 2σ 2

cosh2 σx
0

0 − d2

dx2 + σ 2 − 2σ 2

cosh2 σx

)
(15)

provide the general solution of the linearized equations via the separation ansatz δK1(t, x) =
g1(t)ξ

1(x), δK2(t, x) = g2(t)ξ
2(x). The eigenvalues and eigenfunctions of K are shown in

the following table:

Eigenvalues Eigenfunctions Eigenvalues Eigenfunctions

ε2
1−σ 2 = 1 − σ 2

(
f1−σ 2(x)

0

)
=
( 1

cosh2σx

0

)
ε2

0 = 0

(
0

f0(x)

)
=
(

0
1

cosh2σx

)

ε2
1(q) = σ 2q2 + 1

(
f 1

q (x) = eiqσx(tanh σx − ik)

0

)
ε2

2(k) = σ 2(k2 + 1)

(
0

f 2
k (x) = eikσx(tanh σx − ik)

)

The spectrum of K22 contains a bound state of zero eigenvalue—the translational mode—
and a branch of the continuous spectrum, with the threshold at ε2

2(0) = σ 2. SpecK11 also

9
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is formed by a bound state of positive eigenvalue and a branch of the continuous spectrum
starting at ε2

1(0) = 1. Periodic boundary conditions in the
[− l

2 , l
2

]
interval require

σq · l + δ1(q) = 2πn1, σk · l + δ2(k) = 2πn2, n1, n2 ∈ Z,

such that the phase shifts and the induced spectral densities are

δ1(q) = 2arctan
1

q
= δ(q), δ2(k) = 2arctan

1

k
= δ(k)

ρK11(q) = 1

2π

(
σ l +

dδ1

dq
(q)

)
, ρK22(k) = 1

2π

(
σ l +

dδ2

dk
(k)

)
. (16)

In sum, K also acts in the Hilbert space L2 = ⊕2
α=1 L2

α(S1), and its spectral density in the
limit of very large radius of the circle is

ρK(k) =
(

dn1
dk

0
0 dn2

dq

)
= 1

2π

(
σ l +

dδ

dk
(k)

)(
1 0
0 1

)
.

5. One-loop shift to the classical K-kink masses in the massive nonlinear S2-sigma model

5.1. Zero-point kink energy

The general solution of the linearized field equations governing the small kink fluctuations is

δK1(x0, x) = 1

2
· 1√

2
√

1 − σ 2
(A1−σ 2 ei

√
1−σ 2x0 + A∗

1−σ 2 e−i
√

1−σ 2x0)f1−σ 2(x)

+
1

2
·
√

1

l

∑
k

1√
2ε1(k)

{
A1(k) e−iε1(k)x0f 1

k (x) + A∗
1(k) eiε1(k)x0f ∗1

k (x)
}

δK2(x0, x) = 1

2
·
√

1

l

∑
k

1√
2ε2(k)

{
A2(k) e−iε2(k)x0f 2

k (x) + A∗
2(k) eiε2(k)x0f ∗2

k (x)
}
.

Note that the zero mode is not included because it only contributes to quantum corrections
at two-loop order. In the orthogonal complement to the kernel of K22 in

⊕2
α=1 L2

α(S1),
the eigenfunctions of the K operator satisfying PBC form a complete orthonormal system.
Therefore, the classical-free Hamiltonian

H(2) = E +
∫ l

2

− l
2

dx

{
λ

2

2∑
α=1

(
∂δKα

∂x0
· ∂δKα

∂x0
+ δKα · Kαα · δKα

)}

= E +
λ

2

[√
1 − σ 2(A∗

1−σ 2A1−σ 2 + A1−σ 2A∗
1−σ 2)

+
∑

k

2∑
α=1

{εα(k)(A∗
α(k)Aα(k) + Aα(k)A∗

α(k))}
]

can be written in terms of the normal modes of the system in the quadratic approximation.
From this expression, one passes via canonical quantization,

[
Âα(k), Â

†
β(q)
] = δαβδkq ,[

Â1−σ 2 , Â
†
1−σ 2

] = 1, to the quantum-free Hamiltonian:

Ĥ (2) = E + λ
√

1 − σ 2

(
Â

†
1−σ 2Â1−σ 2 +

1

2

)
+ λ
∑

k

2∑
α=1

[
εα(k)

(
Â†

α(k)Âα(k) +
1

2

)]
.

10
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The kink ground state is a coherent state annihilated by all the destruction operators:

Âα(k)|0;K〉 = Â1−σ 2 |0;K〉 = 0, ∀k,∀α, φ̂a(t, x)|0;K〉 = φK
a (x)|0;K〉.

The kink ground state energy is

E + �E = 〈0;K|Ĥ (2)|0;K〉 = 2λR2σ +
λ

2

√
1 − σ 2 +

λ

2

∑
k

2∑
α=1

εα(k)

= 2λR2σ +
λ

2
Tr2

LK
1
2 . (17)

5.2. Zeta function regularization and Casimir kink energy

Both TrL2K
1
2

0 and TrL2K
1
2 are ultraviolet divergent quantities: one sums over an infinite

number of eigenvalues, and a regularization/renormalization procedure must be implemented
to make sense of these formal expressions. We renormalize the zero-point kink energy by
subtracting the vacuum energy from it to define the kink Casimir energy:

�EC = �E − �E0 = λ

2

[
TrL2K

1
2 − TrL2K

1
2

0

]
.

The subtraction of these two divergent quantities is regularized by using the associated
generalized zeta functions, i.e., we temporarily assign to �EC the finite value:

�EC(s) = μ

2

(
μ2

λ2

)s [
TrL2K−s − TrL2K−s

0

] = μ

2

(
μ2

λ2

)s

[ζK(s) − ζK(s)]

at a regular point of both ζK(s) and ζK0(s). Here,

ζK(s) =
∑

SpecK

λ−s , ζK0(s) =
∑

SpecK0

λ−s
0 ; λ ∈ SpecK, λ0 ∈ SpecK0, s ∈ C

are the spectral zeta functions of K and K0, which are meromorphic functions of the complex
variable s. An auxiliary parameter μ with dimensions of inverse length is used to keep the
physical dimension right and we will go to the physical limit �EC = lims→− 1

2
�EC(s) at the

end of the process.

5.3. Partition and generalized zeta functions

Because analytical information about the spectrum of K is only available at the limit of large
l (bound state energies, phase shifts and spectral densities) it is better to consider first the
partition or heat functions:

TrL2 e−βK0 = σ l

2π

(∫ ∞

−∞
dk e−(σ 2k2+1)β +

∫ ∞

−∞
dk e−σ 2(k2+1)β

)

= l√
4πβ

(e−β + e−σ 2β), β ∈ R.

Note that here we have replaced k and q defined in section 3.1 by σk and σq for a better
comparison between the spectra of K0 and K. The PBC spectral density of K0 is thus obtained
by replacing λ by γ . The K-heat function is also expressed in terms of integrals over the
continuous spectrum at the l = ∞ limit, rather than infinite sums. The integrals, however,
must be weighted with the PBC spectral densities:

Tr∗L2 e−βK = TrL2 e−βK0 + e−(1−σ 2)β +
1

2π

∫ ∞

−∞
dk

dδ

dk

[
e−(σ 2k2+1)β + e−σ 2(k2+1)β

]
= TrL2 e−βK0 + e−(1−σ 2)βErf(σ

√
β) − Erfc(σ

√
β).

11
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The error and complementary error functions of β = λ
kBT

, a fictitious inverse temperature,
arise and the asterisk means that we have not included the zero mode because zero modes do
not enter the one-loop formula (17).

The generalized zeta functions are Mellin transforms of the heat functions:

ζK0(s) = 1

�(s)

∫ ∞

0
dβ βs−1 TrL2 e−βK0 = σ l

2π

∫ ∞

−∞
dk

(
1

[σ 2k2 + 1]s
+

1

[σ 2k2 + σ 2]s

)

= l√
4π

�
(
s − 1

2

)
�(s)

(
1 +

1

σ 2s−1

)

ζ ∗
K(s) = 1

�(s)

∫ ∞

0
dβ βs−1 TrL2 e−βK

= ζK0(s) +
�
(
s + 1

2

)
√

π�(s)

[
2σ

(1 − σ 2)s+ 1
2

2F1

[
1

2
, s +

1

2
,

3

2
;− σ 2

1 − σ 2

]
− 1

sσ 2s

]
.

We indeed find meromorphic functions of s with poles and residues determined from the poles
and residues of Euler �(s) and Gauss hypergeometric 2F1[a, b, c, z] functions5.

In appendix A, we show that the kink Casimir energy in the physical limit s = − 1
2 is the

divergent quantity:

�EC = −λσ

2π

[
lim
ε→0

2

ε
+ 2 ln

μ2

λ2
+ ln

16

σ 2(1 − σ 2)
− 2 + 2F

(0,1,0,0)
1

[
1

2
, 0,

3

2
,− σ 2

1 − σ 2

]]
,

(18)

where 2F
(0,1,0,0)
1

[
1
2 , 0, 3

2 ,− σ 2

1−σ 2

]
is the derivative of the Gauss hypergeometric function with

respect to the second argument.

5.4. Zeta function regularization of the self-energy graphs and kink mass renormalization

It remains to take the effect of mass renormalization into account. The contribution to the kink
energy due to the mass renormalization counter-terms is

�EMR = −λ

∫
dx LC.T.

(
φ

K1
1 , φ

K1
2

) = λ
σ 2

R2
[I (1) + I (σ 2)]

∫
dx φ

K1
2 (x)φ

K1
2 (x)

= 2λσ [I (1) + I (σ 2)].

In the normalization interval of length l the integrals become infinite sums

I (1) = σ

2

∫
dk

2π

1√
σ 2k2 + 1

= 1

2l

∞∑
n=−∞

1

(σ 2n2 + 1)
1
2

,

I (σ 2) = σ

2

∫
dk

2π

1√
σ 2k2 + σ 2

= 1

2l

∞∑
n=−∞

1

(σ 2n2 + σ 2)
1
2

that can be regularized by using zeta functions:

I (1) = − 1

μL
lim

s→− 1
2

(
μ2

λ2

)s+1
�(s + 1)

�(s)
ζK011(s + 1),

I (σ 2) = − 1

μL
lim

s→− 1
2

(
μ2

λ2

)s+1
�(s + 1)

�(s)
ζK022(s + 1),

5 Strictly speaking, Mellin transforms are defined in their fundamental strips, respectively Re s > 1/2, Re s > 0 in
our problems. In the spirit of zeta function regularization, we extend the results of the Mellin transforms to the whole
complex s-plane by analytic continuation.
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Figure 1. Graphics of f (σ) (left), g(σ ) (center), f (σ) and g(σ ) plotted together (right). In the
figure, σ is labeled as s in the abscissa axis.

such that6

�EMR(s) = − 2σλ2

μ
√

4π

(
μ2

λ2

)s+1
�
(
s + 1

2

)
�(s)

(
1 +

1

σ 2s+1

)
.

In appendix A, it is proved that the physical limit s = − 1
2 is also a pole of �EMR(s):

�EMR = λσ

2π

[
lim
ε→0

2

ε
+ 2 ln

μ2

λ2
+ 2(ln 4 − 2) − ln σ 2

]
. (19)

The divergent terms in �EC (18) and �EMR (A.1), as well as the μ-dependent terms, cancel
each other exactly and the one-loop K-kink mass shift is

�E = −λσ

2π

[
2 + 2F

(0,1,0,0)
1

[
1

2
, 0,

3

2
,− σ 2

1 − σ 2

]
− ln(1 − σ 2)

]

= −λσ

π

[
2 −

√
1 − σ 2

σ
arccos

√
1 − σ 2

]
. (20)

In formula (20), we have also written the result found in our derivation à la Cahill–Comtet–
Glauber of the quantum correction, see [9]. The heat kernel/zeta function result is − λσ

π
f (σ )

whereas the CCH formula leads to − λσ
π

g(σ ), where

f (σ) = 1 +
1

2
2F

(0,1,0,0)
1

[
1

2
, 0,

3

2
,− σ 2

1 − σ 2

]
− 1

2
ln(1 − σ 2),

g(σ ) = 2 −
√

1 − σ 2

σ
arccos

√
1 − σ 2.

Despite appearances, f (σ) and g(σ ) are identical functions of σ ∈ [0, 1], as the mathematica
plots in figure 1 show.

This is remarkable: there is no mention about the analytic identity between the functions
f (σ) and g(σ ) in the ample literature on special functions. Nevertheless, they trace identical
curves as functions of σ .

6. High-temperature asymptotic expansion

The exact heat or partition function can be written in the form

TrL2 e−βK = tr

(
TrL2

1
e−βK11 0
0 TrL2

2
e−βK22

)
=
(

l√
4πβ

+ eσ 2βErf[σ
√

β]

)
tr

(
e−β 0

0 e−σ 2β

)
,

where ‘tr’ means trace in the matrix sense. There is an alternative way of computing this
quantity by means of a high-temperature asymptotic expansion. Although we have the exact

6 The differential operators K011 and K022 are defined on page 5.
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Figure 2. Points obtained using the asymptotic expansions for several values of σ plotted on the
exact curve giving the one-loop mass shift as a function of σ .

Table 4. Seeley coefficients.

n cn(K)/σ 2n−1 n cn(K)/σ 2n−1 n cn(K)/σ 2n−1

1 4. 8 2.525 87 × 10−4 15 1.058 69 × 10−11

2 2.666 67 9 2.971 61 × 10−5 16 6.830 27 × 10−13

3 1.066 67 10 3.128 01 × 10−6 17 4.139 56 × 10−14

4 0.304 762 11 2.979 06 × 10−7 18 2.365 46 × 10−15

5 0.067 7249 12 2.590 49 × 10−8 19 1.278 63 × 10−16

6 0.012 3136 13 2.072 239 × 10−9 20 6.557 06 × 10−18

7 1.8944 × 10−3 14 1.5351 × 10−10

formula in our system, we shall also perform the approximate calculation, which is the only
one possible in other systems in order to gain control of this second approach in this favorable
case.

In appendix B it is shown how the coefficients of the power expansion of the K-heat trace

Tr e−βK = 1√
4π

∞∑
n=0

cn(K)βn− 1
2 tr

(
e−β 0

0 e−σ 2β

)
, (21)

the Seeley coefficients cn(K), are obtained through integration of the Seeley densities over the
whole line. The densities satisfy recurrence relations tantamount to the heat kernel equation
starting from a general potential U(x). In our problem we must solve the recurrence relations
between these densities for the potential U(x) = − 2σ 2

cosh2 σx
, essentially the same potential as

for the sine-Gordon kink, see [11]. We list these coefficients up to the 20th order in table 4:
write now the spectral zeta functions in the form

ζK0(s) = ζK0(s; b) + BK0(s; b)

= 1

�(s)
· l√

4π

[
tr
∫ b

0
dβ βs− 3

2

(
e−β 0

0 e−σ 2β

)
+ tr
∫ ∞

b

dβ βs− 3
2

(
e−β 0

0 e−σ 2β

)]

= 1

�(s)
· l√

4π

[
tr

(
γ
[
s − 1

2 , b
]

0
0 σ

σ 2s γ
[
s − 1

2 , σ 2b
] )

+ tr

(
�
[
s − 1

2 , b
]

0
0 σ

σ 2s �
[
s − 1

2 , σ 2b
] )]
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ζK(s) = ζK(s; b) + BK(s; b)

= 1

�(s)
√

4π

∞∑
n=0

cn(K) tr
∫ b

0
dβ βs+n− 3

2

(
e−β 0

0 e−σ 2β

)
+

1

�(s)

∫ ∞

b

dβ βs−1 TrL2 e−βK

= 1

�(s)
√

4π

∞∑
n=0

cn(K) tr

(
γ
[
s + n − 1

2 , b
]

0
0 σ

σ 2(s+n) γ
[
s + n − 1

2 , σ 2b
] )

+
1

�(s)

∫ ∞

b

dβ βs−1 TrL2 e−βK.

The incomplete Euler Gamma functions γ [z, a] are meromorphic functions of z whereas
BK0(s; b) and BK(s; b) are entire functions of s. The splitting point of the Mellin transform is
usually taken at b = 1. We leave b as a free parameter for reasons to be explained later.

Neglecting the entire parts, the zero-point energy renormalization

ζK(s; b) − ζK0(s; b) = 1

�(s)
√

4π

∞∑
n=1

cn(K) tr

(
γ
[
s + n − 1

2 , b
]

0
0 σ

σ 2(s+n) γ
[
s + n − 1

2 , σ 2b
])

gets rid of the c0(K) term. The contribution of c1(K)

�EC
(1) = 1√

π
lim

s→− 1
2

(
μ2

λ2

)s
μ

�(s)
tr

(
σγ
[
s + 1

2 , b
]

0
0 1

σ 2s γ
[
s + 1

2 , σ 2b
])

is exactly canceled by the mass renormalization counter-terms:

�EMR = − 1

π
lim

s→− 1
2

(
μ2

λ2

)s+1
σλ2

μ�(s)
tr

(
γ
[
s + 1

2 , b
]

0
0 1

σ 2s+1 γ
[
s + 1

2 , σ 2b
]) .

We must now subtract the contribution of the zero mode:

ζ ∗
K(s; b) = ζK(s; b) − 1

�(s)
lim
ε→0

∫ b

0
dβ βs−1 e−εβ

= ζK(s; b) − 1

�(s)
lim
ε→0

1

εs
γ [s, εb] = ζK(s; b) − bs

s�(s)
.

Finally, the high-temperature one-loop correction to the K-kink energy is

�E(b) = μ

2
lim

s→− 1
2

(
μ2

λ2

)s
1

�(s)

×
(

1√
4π

∞∑
n=2

cn(K) tr

(
γ
[
s + n − 1

2 , b
]

0
0 σ

σ 2(s+n) γ
[
s + n − 1

2 , σ 2b
] )− bs

s

)
.

In practice, truncation of the series is also necessary:

�E(b,N0) = − λ

4
√

π

[
2√
b

+
1√
4π

N0∑
n=2

cn(K) tr

(
γ [n − 1, b] 0

0 σ 2

σ 2n γ [n − 1, σ 2b]

)]
.

(22)

Using formula (22) to calculate the one-loop kink mass shift, we admit an error of

�E − �E(b,N0) = − λ

23π

(
N0∑
n=2

cn(K)

(
�[n − 1, b] +

�[n − 1, σ 2b]

σ 2(n−1)

)

+
∞∑

n=N0+1

cn(K)�(n − 1)

(
1 +

1

σ 2(n−1)

)⎞⎠ .
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We offer a figure where formula (22) has been applied for N0 = 20 and several values of σ .
The very good precision of the asymptotic formula was achieved by adapting the parameter b
to the value of σ . For instance, we have taken b = 1000 for σ = 0.1, b = 100 for σ = 0.3,
b = 50 for σ = 0.5, b = 20 for σ = 0.7, b = 10 for σ = 0.9 and b = 10 for σ = 1.
Physically, this means that the lighter the particle mass (σ 2), the longer the integration interval
in the Mellin transform must be taken to minimize the error produced by the neglected entire
parts. In practice, we have chosen b in each case at the frontier near the point β0 ∈ (0,∞],
where the asymptotic formula of the K-heat trace departs from its exact value.

7. Conclusions and further comments

In summary, we may draw the following conclusions:

(1) We have obtained the one-loop mass shift to the classical mass of the stable topological
kink that exists in a massive anisotropic nonlinear S

2-sigma model.

(2) In the isotropic case, σ = 1, our result agrees with the answer provided by other authors:
the one-loop correction is twice (in modulus) the correction for the sine-Gordon kink, see
[3, 15].

(3) Our procedure is based on the heat kernel/zeta function regularization method. The result
is identical to the answer achieved by means of the Cahill–Comtet–Glauber formula.

This is a remarkable fact: the CCH formula takes into account only the bound state
eigenvalues and the thresholds to the two branches of the continuous spectrum of the
Schrödinger operators that govern the field small fluctuations. It is essentially finite.
Our computation involves infinite renormalizations. The criterion chosen to set finite
renormalizations—no modification of the particle masses at the one-loop level, equivalent
to the vanishing tadpole criterion in linear sigma models—does the job exactly.

(4) We have also derived a high-temperature approximated formula for the mass shift,
relying on the heat kernel asymptotic expansion. We stress that we have improved
a former weakness of our method. The approximation to the exact result was poor
for light masses—non-dimensional mass < 1—in the model studied in [9]. We have
achieved a very good approximation in this paper even for light particles by enlarging
the integration interval of the Mellin transform and considering an optimum number of
Seeley coefficients. We believe that this is a general procedure, working also in models
where the exact generalized zeta function is not available.

As a final comment, we look forward to addressing the quantization procedure for (a)
multi-solitons and breather modes of this model, (b) stable topological kinks that may arise in
other massive nonlinear sigma models with different potentials, e.g. quartic, and/or different
target manifolds, e.g., S

3.
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Appendix A. Kink Casimir energy and mass renormalization near the pole

The Casimir kink energy is, see section 5.3:

�EC = lim
s→− 1

2

�EC(s) = lim
s→− 1

2

[
μ

2
√

π

(
μ2

λ2

)s
�
(
s + 1

2

)
�(s)

×
(

2σ

(1 − σ 2)s+ 1
2

2F1

[
1

2
, s +

1

2
,

3

2
;− σ 2

1 − σ 2

]
− 1

sσ 2s

)]

= λσ

2
√

π
lim
ε→0

[(
μ2

λ2

)ε
�(ε)

�
(− 1

2 + ε
)

×
(

2

(1 − σ 2)ε
2F1

[
1

2
, ε,

3

2
; σ 2

1 − σ 2

]
− 1(− 1

2 + ε
)
σ 2ε

)]
,

but s = − 1
2 is a pole of �EC(s). To find the residue, we expand this function in the

neighborhood of the pole by using the following results:(
μ2

λ2

)ε
�(ε)

�
(− 1

2 + ε
) � − 1

2
√

π

(
1

ε
+ ln

μ2

λ2
+ ln 4 − 2

)
,

1

− 1
2 + ε

1

σ 2ε
� −2 − ε(4 − 2 ln σ 2)

2

(1 − σ 2)ε
2F1

[
1

2
, ε,

3

2
; σ 2

1 − σ 2

]
� 2 − 2ε

(
ln(1 − σ 2) − 2F

(0,1,0,0)
1

[
1

2
, 0,

3

2
,− σ 2

1 − σ 2

])

where 2F
(0,1,0,0)
1

[
1
2 , 0, 3

2 ,− σ 2

1−σ 2

]
is the derivative of the Gauss hypergeometric function with

respect to the second argument and we made use of the fact that 2F1
[

1
2 , 0, 3

2 ,− σ 2

1−σ 2

] = 1.
The physical limit s = − 1

2 is also a pole of �EMR(s), see section 5.4:

�EMR = − 2σλ√
4π

lim
ε→0

(
μ2

λ2

)ε
�(ε)

�
(− 1

2 + ε
) ( 1

σ 2ε
+ 1

)

= λσ

2π
lim
ε→0

(
1 + ε ln

μ2

λ2

)(
1

ε
+ ψ(1)

)(
1 − εψ

(
−1

2

))
(2 − ε ln σ 2)

= λσ

2π

[
lim
ε→0

2

ε
+ 2 ln

μ2

λ2
+ 2(ln 4 − 2) − ln σ 2

]
. (A.1)

Appendix B. The heat kernel expansion

Consider the K0- and K-heat kernels:(
∂

∂β
+ K0

)
KK0(x, y;β) = 0, KK0(x, y; 0) = δ(x − y)(

∂

∂β
+ K

)
KK(x, y;β) = 0, KK(x, y; 0) = δ(x − y),

(B.1)

which provide an alternative way of writing the K0- and K-heat traces:

TrL2 e−βK0 = lim
l→∞

∫ l
2

− l
2

dx KK0(x, x;β), TrL2 e−βK = lim
l→∞

∫ l
2

− l
2

dx KK(x, x;β).
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Note that the form of the K-heat equation (B.1),
(

∂
∂β

+ K0 − U(x)
)
KK(x, y;β) = 0, suggests

a solution based on the K0-heat kernel: KK(x, y;β = CK(x, y;β)KK0(x, y;β). The density
CK(x, y;β) satisfies the infinite temperature condition CK(x, y; 0) = IN×N and the transfer
equation (

∂

∂β
+

x − y

β

∂

∂x
− ∂2

∂x2

)
CK(x, y;β) = U(x)CK(x, y;β). (B.2)

Next we seek a power series solution, CK(x, y;β) = ∑∞
n=0 cn(x, y)βn, of (B.2), which

becomes tantamount to the recurrence relations:

ncn(x, y) + (x − y)
∂cn

∂x
(x, y) = ∂2cn−1

∂x2
(x, y) + U(x)cn−1(x, y). (B.3)

In fact, only the densities at coincident points x = y on the line are needed. We introduce the
notation (k)Cn(x) = limx→y

∂kcn

∂xk (x, y) to write the recurrence relations for the Seeley densities
(and their derivatives) in the abbreviated form:

(k)Cn(x) = 1

n + k

⎡
⎣(k+2)Cn−1(x) −

k∑
j=0

(
k

j

)
∂jU(x)

∂xj

(k−j)Cn−1(x)

⎤
⎦ .

The (Seeley) coefficients cn(K) are the integrals over the infinite line of the densities cn(x, x),
i.e., cn(K) = ∫∞

−∞ dx cn(x, x).
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